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§1 Introduction

In this “Celebration of Mathematics”, we will prove that every number in Z except
1, 0,−1 have a unique prime factorization.

Starting in Section 2, we will establish the Ring and Order axioms, as well as the
Well Ordering Principle (WOP) that will be used to prove all further theorems. In the
next section, some basic arithmetic properties will be established, such as the uniqueness
of 0 in addition and 1 in multiplication, as well as other basic facts such as multiplication
with 0. In section 4, more advanced definitions and notation will be introduced, such as
product notation, as well as the definitions of prime and composite. Then, some facts
about divisibility will be established. With the basics down, we then begin our proof
of Bezout’s lemma, which follows after the proof of the division algorithm. Then, using
Bezout’s, we quickly prove the fundamental lemma and then a generalization of the
fundamental lemma. We then prove that all positive integers have a prime factorization
by using the definition of primes and composites. Finally, by using the fact that a prime
factorization exists for all positive n, and the generalized fundamental lemma, we prove
that a unique prime factorization exists for all positive n. Then, we use this to show that
there also exists a unique canonical prime factorization. Finally, we show that since there
exists a unique canonical factorization for positive n where n ̸= 1, it must also exist for
all −n.

§2 Axioms

All variables used in the entire proof are in the ring Z, in which the operations of addition
(+) and multiplication (·) are defined.

Axiom 2.1 (Closure). For all a, b ∈ Z, a+ b ∈ Z and ab ∈ Z.

Axiom 2.2 (Commutativity). For all a, b ∈ Z, a+ b = b+ a and a · b = b · a.

Axiom 2.3 (Associativity). For all a, b, c ∈ Z, a+ (b+ c) = (a+ b) + c and a(bc) = (ab)c.

Axiom 2.4 (Additive Identity). There exists an element 0 ∈ Z such that, for all a ∈ Z,
a+ 0 = a.

Axiom 2.5 (Additive Inverse). For all a ∈ Z, There exists an additive inverse b ∈ Z
such that, for all a ∈ Z, a+ b = 0. We denote this additive inverse as −a.

Axiom 2.6 (Multiplicative Identity). There exists an element 1 ∈ Z such that, for all
a ∈ Z, a · 1 = a.
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Axiom 2.7 (Distributive Property). For all a, b, c ∈ Z, a(b+ c) = ab+ ac.

We will also need the Order Axioms to be able to compare elements in Z. The
Order Axioms define a nonempty set P ⊂ Z, representing the positive integers, that
satisfy the following properties.

Axiom 2.8 (Closure). For all a, b ∈ P , a+ b ∈ P and ab ∈ P .

Axiom 2.9 (Nontriviality). 0 ̸∈ P .

Definition 2.10 (Strict Comparison). For all a ∈ Z, define a > 0, or alternatively 0 < a,
to mean that a ∈ P . Furthermore, for all a, b ∈ Z, a > b is equivalent to the statement
a+(−b) > 0, or that there exists k ∈ P such that a = b+k. Similarly, a < b is equivalent
to the statement 0 < b+ (−a), or that there exists k ∈ P such that a+ k = b.

Axiom 2.11 (Trichotomy). For all a ∈ Z, define 0 < a to mean that a ∈ P . Either
a > 0, a = 0, or a < 0.

Definition 2.12 (Comparison). For all a ∈ Z, define a ≥ 0, or alternatively 0 ≤ a, to
mean that a ∈ P ∪ {0}. Using the Strict Comparison definition, it can be proven that,
for all a, b ∈ Z, a ≥ b is equivalent to a+ (−b) ≥ 0, or that there exists k ∈ P ∪ {0} such
that a = b+ k, and a ≤ b is equivalent to 0 ≤ b+ (−a), or that there exists k ∈ P ∪ {0}
such that a+ k = b.

In this exposition, P will be used interchangeably with Z+, and P ∪ {0} with Z0+.
One other axiom that doesn’t necessarily follow from the ring axioms or the order

axioms but is crucial in proving UFT for Z is the Well Ordering Principle (WOP).

Axiom 2.13 (WOP). For any nonempty set of positive integers, there exists a least
element in the set.

This axiom gives a strong notion of order to the integers, more than what the
order axioms can give. It allows us to define functions like gcd(a, b) and lcm(a, b), which
both require the concept of ”absolute greatest” or ”absolute least”. It also will be used
commonly in proofs by contradiction to prove properties for all elements in Z.

§3 Techniques

In these proofs, we will be deriving basic principles using the ring axioms and order
axioms which we will be using often later on in this paper.

Theorem 3.1

a+ b = a+ b′ =⇒ b = b′

Proof. We know ∃ − a such that a + (−a) = 0 by additive inverses. Rearranging our
original equation:

b+ a = b′ + a

Adding −a to both sides,

b+ a+ (−a) = b′ + a+ (−a)

Using Associative property:

b+ (a+ (−a)) = b′ + (a+ (−a))
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Substituting a+ (−a) = 0:
b+ 0 = b′ + 0

By the Additive identity definition:
b′ = b.

Theorem 3.2

a = −(−a)

Proof. By additive inverses:
a+ (−a) = 0

Commuting:
(−a) + a = 0

We also know by additive inverses:

(−a) + (−(−a)) = 0

Substituting:
(−a) + (−(−a)) = (−a) + a

From Theorem 3.1:
−(−a) = a.

Theorem 3.3

a · 0 = 0

Proof. By Distributive Property:

a(0 + b) = a · 0 + a · b

Since 0 + b = b by the additive identity, substituting:

a(b) = a · 0 + a · b

Commuting:
a · b = a · b+ a · 0

Using a · b = a · b+ 0 and substituting:

a · b+ 0 = a · b+ a · 0

From Theorem 3.1, we get:
0 = a · 0
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Theorem 3.4

−(ab) = a(−b)

Proof. By additive inverses:
b+ (−b) = 0

By Theorem 3.5:
a · 0 = 0

Substituting:
a · (b+ (−b)) = 0

ab+ a(−b) = 0

By additive inverses:
ab+ (−(ab)) = 0

Substituting:
ab+ a(−b) = ab+ (−(ab))

From Theorem 3.1:
a(−b) = (−(ab))

Theorem 3.5

ab = 0 =⇒ a = 0 or b = 0

Proof. We proceed with proof by contradiction. Assume a, b ̸= 0. Then, either a > 0 or
a < 0 and either b > 0 or b < 0 by Trichotomy from the Order Axioms. We consider 4
cases in total:

Case 1: a, b > 0
Since a, b > 0, we have that

a, b ∈ Z+.

By Closure from the Order Axioms:

ab ∈ Z+ =⇒ ab > 0

By Trichotomy from the Order Axioms:

ab ̸= 0.

Case 2: a > 0, b < 0
Since b < 0, we have by the Comparison definition that

0 < 0 + (−b) =⇒ 0 < −b.

By Theorem 3.4, we have
a(−b) = −(ab).

Since a, (−b) ∈ Z+, we have by Closure:

a(−b) = −(ab) ∈ Z+ =⇒ 0 < −(ab)
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By the Comparison definition:
ab < 0

By Trichotomy:
ab ̸= 0.

Case 3: a < 0, b > 0
Since a < 0, we have by the Comparison definition that

0 < 0 + (−a) =⇒ 0 < −a.

By Theorem 3.4, we have
(−a)b = −(ab).

Since (−a), b ∈ Z+, we have by Closure:

(−a)b = −(ab) ∈ Z+ =⇒ 0 < −(ab)

By the Comparison definition:
ab < 0

By Trichotomy:
ab ̸= 0.

Case 4: a < 0, b < 0
Since a < 0 and b < 0, we have by the Comparison definition that

0 < 0 + (−a) =⇒ 0 < −a

and
0 < 0 + (−b) =⇒ 0 < −b.

By Theorem 3.4, we have

(−a)(−b) = −(a(−b)) = −(−(ab)) = ab.

Since (−a), (−b) ∈ Z+, we have by Closure:

(−a)(−b) = ab ∈ Z+ =⇒ 0 < ab

By Trichotomy:
ab ̸= 0.

Thus, we have shown

Theorem 3.6

For all a, b ∈ Z, if a ̸= 0 and ab = ab′, then b = b′

Proof. Subtracting ab′:
ab− ab′ = ab′ − ab′

ab− ab′ = 0

a(b− b′) = 0

From Theorem 3.5, and since a ̸= 0:

b− b′ = 0

b = b′
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Theorem 3.7

For all x, y, a, b ∈ Z, if a < x and b < y, then a+ b < x+ y.

Proof. By the Comparison definition, there exists k, l ∈ Z+ such that

x = a+ k

y = b+ l.

Adding:
x+ y = a+ b+ k + l

By Closure:
k + l ∈ Z+

By Associativity:
(x+ y) = (a+ b) + (k + l)

By the Comparison definition:
x+ y > a+ b.

Theorem 3.8

For all a, x, b, y ∈ Z+, if a < b and x < y, ax < by.

Proof. By the Comparison definition, there exists k, l ∈ Z+ such that

b = a+ k

y = x+ k

Multiplying gets us:
by = (a+ k)(x+ l)

Distributing gets us:
by = ax+ al + xk + kl

By Closure, al, xk, kl ∈ Z+. Then, by Closure again:

al + xk + kl ∈ Z+

By the Comparison definition:
by > ax.

Theorem 3.9 (NIBZO)

There are no positive integers between 0 and 1.
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Proof. Let S = {x | 0 < x < 1} Assume for the sake of contradiction that S ̸= ∅. Then,
by WOP, S will have a minimum, m. We will construct an element lesser than m between
0 and 1, which will cause a contradiction. We know that

0 < m < 1

Using Theorem 3.8 and multiplying by m:

0 ·m < m ·m < 1 ·m

0 < m ·m < m

Including the fact that m < 1:

0 < m ·m < m < 1

So, we have found another integer, m ·m, between 0 and 1 that is less than m, which
contradicts the minimality of m. Therefore, S must be empty.

Corollary 3.10

For all x, y ∈ Z, if x > y, then x ≥ y + 1.

We leave the proof of this as an exercise to the reader. (Hint: use NIBZO)

§4 Additional Definitions and Notation

All variables used in the entire proof are in Z. If any number is expressed as a variable,
assume it’s a number n ∈ Z.

Definition 4.1 (Divisibility). We say a number a | b or “a divides b” if there exists some
k ∈ Z such that ak = b.

Definition 4.2. [n] denotes the set {k | k ∈ Z+, 1 ≤ k ≤ n}.

Definition 4.3. (ai)
k
i=1 denotes a sequence of k elements starting from a1 and ending

with ak.

Definition 4.4. Let
∏k

i=1 ai be defined as follows:

1.
∏1

i=1 ai = a1

2.
∏k+1

i=1 ai = ak+1 ·
∏k

i=1 ai

Theorem 4.5

For all k ∈ Z+, if ai is defined for all i ∈ [k], then
∏k

i=1 ai is defined.

Proof. Let S = {k | k ∈ Z+,
∏k

i=1 ai is not defined}. We know that the ending index
1 ̸∈ S because of (1) in Definition 4.4.

Assume for the sake of contradiction that S is nonempty. By WOP, there exists a
minimum element m ∈ S. Since m ≥ 1 and m cannot be equal to 1, m ≥ 2.

Now, let’s consider the ending index m− 1. Since m ≥ 2, we know that m− 1 ≥ 1,
so m − 1 is a valid ending index. Also, using (2) in Definition 4.4, we can define∏m

i=1 ai = am ·
∏m−1

i=1 ai. But, because m ∈ S, this should not be defined for m, which is
a contradiction. Hence, S must be empty.
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Definition 4.6. Let
∏k

i=1;i ̸=j ai be defined as the product
∏k−1

i=1 bi such that, for i < j,
bi = ai, and, for i ≥ j, bi = ai+1.

§5 Divisibility

Theorem 5.1

a | a for all a.

Proof.
a = 1 · a

By definition, ∃k = 1 such that a · k = a, so a | a.

Theorem 5.2

a | b =⇒ a | bc

Proof. There exists k ∈ Z such that
b = ak

Multiplying by c gets us:
bc = akc = a(kc)

By Closure, kc ∈ Z. Thus, a | bc.

Theorem 5.3

If a | b and b | c, then a | c.

Proof. Since a | b and b | c, there exist k, l ∈ Z such that

b = ka

c = lb

Substituting b = ka into the second equation, we get

c = l(ka)

c = (lk)a

By Closure, lk ∈ Z. Thus, a | c.

Theorem 5.4

For all a, b ∈ Z+, if there exists k ∈ Z+ such that k > 1 and ak = b, then a < b.
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Proof. We get that
ak = b

a(k + 1 + (−1)) = b

a(1 + k + (−1)) = b

a+ a(k + (−1)) = b

Since k > 1, we have that k + (−1) > 0, so k + (−1) ∈ Z+. Then, by Closure of Z+,
a(k + (−1)) ∈ Z+. Using the fact that a+ a(k + (−1)) = b, we get by the Comparison
definition that

a ≤ b.

Theorem 5.5

For all a, b ∈ Z+, if a | b, a ≤ b.

Proof. Since a | b, there exists k ∈ Z+ such that

b = ka

Since k ∈ Z+, k ̸< 1 because of NIBZO, so, by Trichotomy, either k > 1 or k = 1.
The first case is taken care of in Theorem 5.4.
In the second case, b = ak = a · 1 = a.

Theorem 5.6

For a, b, d ∈ Z, if d | a and d | b, then, for all r, s ∈ Z, d | (ar + bs).

Proof. Since d | a and d | b, there exist k1, k2 ∈ Z such that a = k1d and b = k2d. Then:

ar + bs = (k1d)r + (k2d)s

ar + bs = d(k1r + k2s)

Since k1, r, k2, s ∈ Z we have that (k1r + k2s) ∈ Z by Closure. So, by the definition of
Divisibility,

d | ar + bs.

Remark 5.7. Given a and b, we will call ax+ by a linear combination of a and b.

Now, we will define the terms that are central to this exposition:

Definition 5.8 (Prime). For all p ∈ Z+, p is defined as prime iff p > 1 and, for all
a ∈ Z+ such that a | p, either a = 1 or a = p.

Definition 5.9 (Composite). For all p ∈ Z+, p is defined as composite iff p > 1 and p is
not prime; that is, there exists a ∈ Z+ such that 1 < a < p and a | p.
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§6 Bezout’s lemma

Theorem 6.1 (Division Algorithm)

For all a ∈ Z and b ∈ Z+, there exists q and r such that a = bq + r and 0 ≤ r < q.

Proof. Let set S = {r | r ∈ Z0+, r = a− bq}.
S is nonempty and a subset of Z0+, so by WOP, S has a minimum. Call this

minimum r1.
We will prove that r1 is in the range 0 ≤ r1 < b. So, for the sake of contradiction,

assume that r1 ≥ b. Let r2 = r1 + (−b) and q2 = q1 + 1. By the following computations,
we get that

a = bq1 + r1

a = bq1 + r1 + b− b

a = bq1 + b+ r1 − b

a = b(q1 + 1) + (r1 − b)

a = bq2 + r2

=⇒ r2 = a− bq2

Given that r1 ≥ b, we get that

r1 ≥ b

r2 = r1 − b ≥ b− b = 0

=⇒ r2 ≥ 0

Since r2 ≥ 0 and r2 = a− bq2, r2 must also be in S and r2 < r1, a contradiction on
our definition of r1 as the minimum of S.

Thus, there exists r = a− bq such that 0 ≤ r < b.

Theorem 6.2 (Bezout’s Lemma)

For all a, b ∈ Z, there exist x, y ∈ Z such that ax+ by = gcd(a, b).

Proof. Given values for a and b, let S = {c = ax+ by | x, y ∈ Z; c > 0}. We will show
that the minimum element of this set is gcd(a, b).

To show this, we must first know if there even exists a minimum element in S,
which can be simply shown with WOP since S ⊆ Z+. We will call this element d.

Next, we will show that all elements of S are divisible by d. To do this, assume
there exist elements in S that do not divide d. More formally, let S′ be the subset of
S such that S′ = {c = ax + by | x, y ∈ Z, c > 0, d ∤ c0}, and assume for the sake of
contradiction that S′ is not empty. We will attempt to prove that we can construct an
element in S′ smaller than d, which is a violation of the minimality of d.

By WOP, there exists a minimum element in S′, say c0. Since c0 ∈ S′, we know
that d ∤ c0. By the Division Algorithm, there exist a quotient q0 ∈ Z and a nonzero
remainder r0 ∈ Z such that 0 < r < d and c0 = dq0 + r0.
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Since d ∈ S and c0 ∈ S, we can write d = ax + by and c0 = ax0 + by0 for some
x, y, x0, y0 ∈ Z. Using the following manipulations, we get:

c0 = ax0 + by0 (1)

d = ax+ by (2)

−rd = −r(ax+ by) = a(−rx) + b(−ry) (3)

c0 + (−rd) = ax0 + by0 + a(−rx) + b(−ry) (4)

= a(x0 + (−rx)) + b(y0 + (−ry)) (5)

=⇒ r0 = a(x0 + (−rx)) + b(y0 + (−ry)) (6)

Here, we have just represented r0, a positive number less than d, as a linear
combination of a and b, which contradicts the minimality of d as the least positive linear
combination of a and b. So, S′ must be empty.

So, all elements of S must be divisible by d. Since a and b are also in S, it follows
that d | a and d | b.

Now, we must prove that d is the greatest divisor of a and b. Let d′ be another
common divisor of a and b. Since d′ | a and d′ | b, d must divide any ax+ by by Theorem
5.6. Since d can be represented as a linear combination of a and b, it follows that d′ | d
and, consequently, d′ ≤ d by Theorem 5.5 . So, d must be the greatest common factor of
a and b.

§7 Unique Factorization Theorem

Now, we are at the final stage of proving UFT. To reach this point, we will need to
prove properties of primes, such as “every number has a prime factor” and “if a prime
divides a number, then that prime divides at least one of its factors” to show that a
prime factorization exists and that two prime factorizations of a number must actually
be the same to demonstrate uniqueness.

We will start with the “Fundamental Lemma”.

Theorem 7.1 (Fundamental Lemma)

For all a, b,m ∈ Z, if m | ab and gcd(m, a) = 1, then m | b.

Proof. Since gcd(m, a) = 1, there exist x, y ∈ Z such that mx + ay = 1 by Bezout’s
Lemma. Multiplying both sides by b, we get:

b(mx+ ay) = b · 1 = b

bmx+ bay = b

mxb+ aby = b

m(xb) + ab(y) = b

Since m | m and m | ab, m divides any linear combination of a and b, which includes
m(xb) + ab(y) = b. Therefore, m | b.

Theorem 7.2 about prime divisors is a direct consequence of Theorem 7.1.

Theorem 7.2

For all a, b, p ∈ Z+, if p is prime and p | ab, then p | a or p | b.
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Proof. There are two cases: p | a, and p ∤ a.
The first case means we are done.
In the second case where p ∤ a, the only factors of p are 1 and p, so the possible

values for gcd(a, p) are 1 and p. If gcd(a, p) = p, then p | a, which is a contradiction since
p ∤ a in this case. So, gcd(a, p) = 1. Knowing that p | ab, we can apply the Fundamental
Lemma to get that p | b.

Corollary 7.3 is an extension of Theorem 7.2 with a variable number of factors.

Corollary 7.3

Let (ni)
k
i=1 be a sequence such that for all i ∈ [k], ni ∈ Z+. If p is prime and

p |
k∏

i=1

ni,

then there exists i ∈ [k] such that p | ni.

Proof. There are two cases: p | nk and p ∤ nk.
In the first case, let i = k, and we are done.
In the second case, we will have to use WOP in our argument since we are ma-

nipulating a product with a variable number of factors in our product. Let S = {j |
1 ≤ j ≤ k and p ∤

∏k
i=j ni}. To start, we know that S is nonempty since, in this case,

p ∤ nk =
∏k

i=k ni, so k ∈ S. We also know that 1 ̸∈ S since it is given that p |
∏k

i=1 ni.
By WOP, there exists a minimal element m ∈ S. We will show that p | nm−1.
Because m ∈ S, p ∤

∏k
i=m ni. Also, because 1 ̸∈ S, m is greater than 1, and by

NIBZO, m ≥ 2. Now, let’s consider the starting index m − 1. Because m ≥ 2, m − 1
is greater than or equal to 1, so m− 1 is a valid index to use. Since m is the minimal
element in S, m− 1 is not in S, so we know that p |

∏k
i=m−1 ni. We have that

p |
k∏

i=m−1

ni = nm−1 ·
k∏

i=m

ni

By Theorem 7.2, we find that either p | nm−1 or p |
∏k

i=m ni. Since p ∤
∏k

i=m ni, it
must be that p | nm−1.

Theorem 7.4

For all n ∈ Z+, if n > 1, there exists a prime p ∈ Z+ such that p | n.

Proof. Because n > 1, there are two cases: n is prime or n is composite.
If n is prime, we know that n | n, so let p = n and we are done.
Now, we deal with the case that n is composite. Let

S = {n | n ∈ Z+, n is composite, n doesn’t have a prime factor}.

Assume for the sake of contradiction that S is nonempty. By WOP, there exists a
least element m ∈ S. Since m is composite, there exist a, b ∈ Z+ such that a, b > 1 and
ab = m. Because a | m and a, b > 1, a < m by Theorem 5.4. Since a > 1 and a ̸∈ S, a
must have a prime factor by the definition of S, say p. Since p | a and a | m, p divides m
and so m has a prime factor, which is a contradiction. Thus, S must be empty.
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The following proofs will demonstrate UFT for all integers. But, first, what is a
prime factorization?

Definition 7.5. The prime factorization of n is its representation as a product of primes

k∏
n=1

pi,

where, for all i ∈ [k], pi is prime.

Theorem 7.6 (Existence of Factorization)

For all n ∈ Z+ such that n > 1, n is either a prime or can be represented as a
product of primes.

Proof. If n is a prime, we are done. Let’s prove that, if n is composite, n can be
represented as a product of primes.

Let the set

S = {n | n > 1, n is composite, n cannot be represented as a product of primes}.

Assume for the sake of contradiction that S is nonempty. By WOP, there exists a
minimum element m ∈ S. Since m is composite, there exist a, b ∈ Z+ such that a, b > 1
and ab = m. By Theorem 5.4, we have that 1 < a < m and 1 < b < m. Now, there are
four cases in all: a is prime or a is composite, and b is prime or b is composite. Let’s
explore these cases:

Case 1: a, b are prime
This is a direct contradiction since the prime factorization of m would just be ab.

Case 2: a is prime, b is composite
Since b < m, b is not in S. Then, because b is composite, b can be represented as a
product of primes: let this product of primes be

k∏
i=1

pi.

Then, the prime factorization of n would be

ab = a ·
k∏

i=1

pi,

which is a contradiction.
Case 3: a is composite, b is prime

Swap the values of a and b, and repeat the proof for Case 2.
Case 4: a is composite, b is composite

Since a < m and b < m, a and b are not in S. Then, because a and b are composite, a
and b can be represented as a product of primes: let these products of primes be

k∏
i=1

pi
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and
l∏

i=1

qi,

respectively. Then, the prime factorization of n would be

ab =

k∏
i=1

pi ·
l∏

i=1

qi,

which is a contradiction.
Thus, the set S must be empty.

Theorem 7.7 (Uniqueness of Factorization)

For all n ∈ Z+ such that n > 1, let
∏k

i=1 pi and
∏l

i=1 qi be two factorizations of n.
Then the two factorizations must be identical.

Proof. Let n =
∏k

i=1 pi =
∏l

i=1 qi. We say that these two factorizations of n are different
when either k ̸= l or the number of times each pi occurs in each factorization is different.

If n is prime, then its prime factorization consists only of one prime factor: n.
Otherwise, n having two different prime factorizations would suggest that n is either
equal to a different prime or is composite, which is a contradiction. So, let n be composite.

Let

S = {n | n ≥ 2, n is composite, n has two different prime factorizations}.

By WOP, there exists a minimum element m ∈ S. Let
∏k

i=1 pi and
∏l

i=1 qi be the two
different factorizations of m. Because m is composite, it is straighforward that these two
factorizations each have at least 2 primes, and that k ≥ 2 and l ≥ 2.

Now, let’s take p1, the first prime that divides m. since
∏k

i=1 pi =
∏l

i=1 qi, p1 |∏l
i=1 qi. By Theorem 7.3, there must exist a qj such that p1 | qj . Since qj is prime, the

only factors of qj are 1 and qj . Since p1 cannot be 1, it must be that p1 = qj . Substituting,
we get that

p1 ·
k∏

i=2

pi = p1 ·
l∏

i=2;i ̸=j

qi

Letting m′ be the other part of the prime factorization
∏k

i=2 pi, we get that

p1 ·
k∏

i=2

pi = p1 ·m′ = p1 ·
l∏

i=1;i ̸=j

qi

=⇒ m′ =

k∏
i=2

pi =

l∏
i=1;i ̸=j

qi (by Cancellation).

There are four cases here:

1. k = 2 and l = 2

2. k = 2 and l > 2

3. k > 2 and l = 2

14
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4. k > 2 and l > 2

In Case 1, m′ really only has 1 prime factor in each prime factorization, and so
those prime factorizations must be identical. Therefore, the two prime factorizations of
m, with p1 included, must be identical, which contradicts the fact that m ∈ S.

The next two cases, Case 2 and Case 3, are not possible since they imply that a
single prime is equal to a product of multiple primes and, therefore, is composite.

In last case, Case 4, since m′ is the product of multiple primes, m′ is composite.
Also, since m′ | m and pi ≥ 2, m′ must be less than m by Theorem 5.4. Also, since m is
the minimal element in S, m′ cannot be in S, which means that the two factorizations
of m′ shown above must be the same. As a result, multiplying both sides by p1 to get
m actually yields two identical factorizations for m because it increases the number of
factors of pi in the two identical factorizations of m′ by one. So, there cannot be two
different prime factorizations for m.

Therefore, the set S is empty, and each n ∈ Z+ has to have a unique factorization.

§8 Canonical Factorization

Definition 8.1 (Exponents). We define an as follows for n ∈ Z+:

1. a1 = a

2. an = a · an−1

Theorem 8.2

For all n ∈ Z+ such that n ≥ 2, n has a unique canonical factorization, i.e. a
factorization such that n =

∏k
i=1 p

ei
i , with all pi’s being distinct from each other

pairwise and ei ≥ 1.

Proof. Say for the sake of contradiction we have two different canonical factorizations:

n =
k∏

i=1

peii =
k∏

i=1

pfii

Since we have proven Theorem 7.7 that n must have a unique prime factorization,
it follows that the set of distinct primes in the prime factorization must remain the
same across canonical factorizations. Thus, we just need to prove that the exponents of
corresponding primes are the same.

So, we must assume that there exists some j ∈ [k] such that ej ̸= fj . Without Loss
of Generality, let ej < fj . From both factorizations, we can factor out p

ej
j to get

n = p
ej
j ·

k∏
i=1;i ̸=j

peii = p
ej
j · pfj−ej

j ·
k∏

i=1;i ̸=j

pfii

=⇒
k∏

i=1;i ̸=j

peii = p
fj−ej
j ·

k∏
i=1;i ̸=j

pfii (by Cancellation)

If fj − ej > 0, the RHS, and the LHS, is divisible by pj . Since pj |
∏k

i=1;i ̸=j p
ei
i , pj

must divide one of the other primes in the factorization, but this is not possible since
each prime in the canonical factorization must be distinct. Therefore, fj = ej .
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Corollary 8.3

For all n ∈ Z such that n > 1 or n < −1, n has a unique factorization and a unique
canonical factorization.

Proof. The result in Theorem 8.2 can be generalized to all n ∈ Z. Theorem 8.2 proves
that it exists for all positive integers greater than 1. For any n ∈ Z such that n < −1,
the unique factorization can be derived by taking (−1)n, which is in Z+, finding its
factorization, and then multiplying the resulting factorization by −1. The same process
can be done using canonical factorizations.
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