Ishwar Suriyaprakash

Problem Statement

Given A set S of objects each of which have different degrees of a set of qualities, Q

Goal Partition S into groups such that objects with 'similar' qualities belong to the same group

Example: Points in space

How can we group, or cluster, the points above?

Example: Points in space

One possible way is shown above.

Example: Points in space

Points are 'closer' to their own group's 'centroid' than to the centroid of another group

Distance & Centroid $P_{1}(x_{1}, y_{1})$ $P_{2}(x_{2}, y_{2})$

Distance measures closeness of points Example: $D(P_1, P_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

Distance & Centroid $P_{1}(x_{1}, y_{1})$ $P_{2}(x_{2}, y_{2})$ $P_{3}(x_{3}, y_{3})$ $P_{4}(x_{4}, y_{4})$

Centroid is a location indicative of center of mass $C(P_1, P_2, P_3, P_4) = \left(\frac{(x_1 + x_2 + x_3 + x_4)}{4}, \frac{(y_1 + y_2 + y_3 + y_4)}{4}\right)$

K-Means clustering is an *iterative* algorithm Minimizes distance of points to cluster centroids

Inputs

- 1. Set of points (S) and their coordinates
- 2. Number of clusters (K)

Algorithm

- 1. Select K random points to be initial cluster centroids
- 2. Iterate steps below until centroids don't change
 - 1. Compute distance of each point to each centroid
 - 2. Assign each point to the closest cluster
 - 3. Compute new centroids for each cluster

Output: Partition of S into K sets

Demo (courtesy of Naftali Harris)

Can be extended to *m* points in *n*-dimension space

$$S = \{P_1(x_{11}, x_{12}, \dots, x_{1n}), P_2(x_{21}, x_{22}, \dots, x_{2n}), \dots, P_m(x_{m1}, x_{m2}, \dots, x_{mn})\}$$

Distance
$$D(P_i, P_j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{in} - x_{jn})^2}$$

$$Centroid C(P_1, P_2, \dots, P_r) = \left(\frac{(x_{11} + x_{21} + \dots + x_{r1})}{r}, \frac{(x_{12} + x_{22} + \dots + x_{r2})}{r}, \dots, \frac{(x_{1n} + x_{2n} + \dots + x_{rn})}{r}\right)$$

Can be extended to *m* points in *n*-dimension space

Can be extended to *m* objects with *n* features

Can be extended to *m* points in *n*-dimension space

Can be extended to *m* objects with *n* features

- Objects are represented by points
- Features are quantified using coordinates
- Distance between two points is an attempt to measure the similarity between corresponding objects

Can be extended to *m* points in *n*-dimension space

Can be extended to *m* objects with *n* features

- Objects are represented by points
- Features are represented by coordinates
- Distance between two points is an attempt to measure the similarity between corresponding objects
- \bigstar m movies with n features (e.g. genre, age limit)

Can be extended to *m* points in *n*-dimension space

Can be extended to *m* objects with *n* features

- Objects are represented by points
- Features are represented by coordinates
- Distance between two points is an attempt to measure the similarity between corresponding objects

m movies with *n* features (e.g. genre, age limit) *m* people with *n* features

Fun Activity

Club members: Objects Likes & dislikes: Features

	Sports	Humanities	STEM	Social Media
Member 1	-5	4	0	1
Member 2	0	1	-2	3
Member 3	3	-1	5	2

Thank you! Questions?