SOUND ASLEEP

Ishwar Suriyaprakash

INTRODUCTION

- Human beings are sensitive to sound
- Sounds come from different sources
- Some sounds desirable at higher levels
 - e.g. Vocal or instrumental music
 - May need to be amplified
- Some other sounds not desirable
 - e.g. Car exhaust noise, Industrial noise
 - May need to be attenuated
- Many of these sounds propagate through tubes

QUESTION

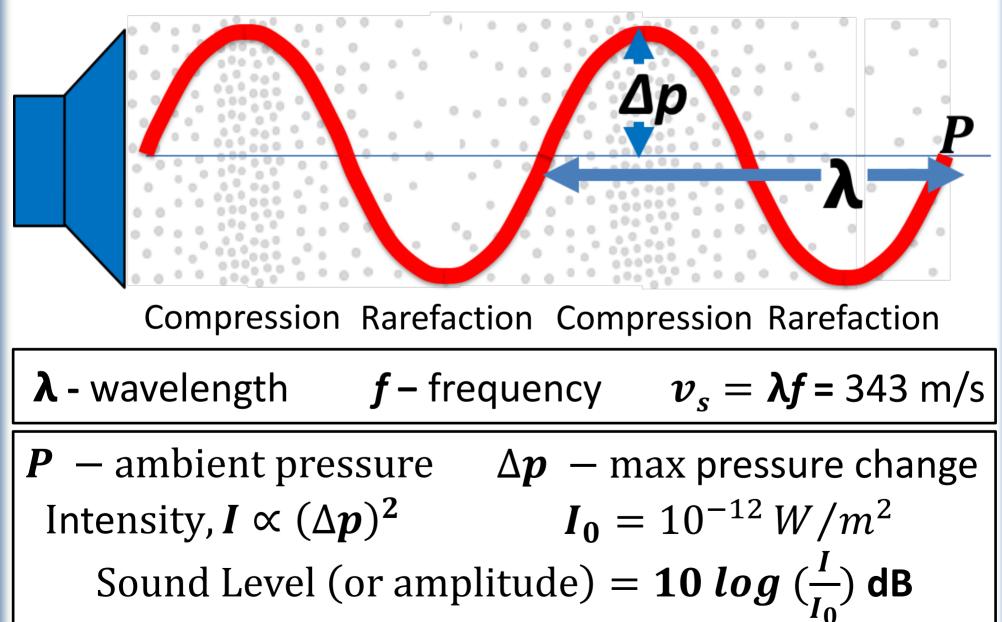
What is the effect of the length of a hollow tube on the amplitude of sound propagating through it?

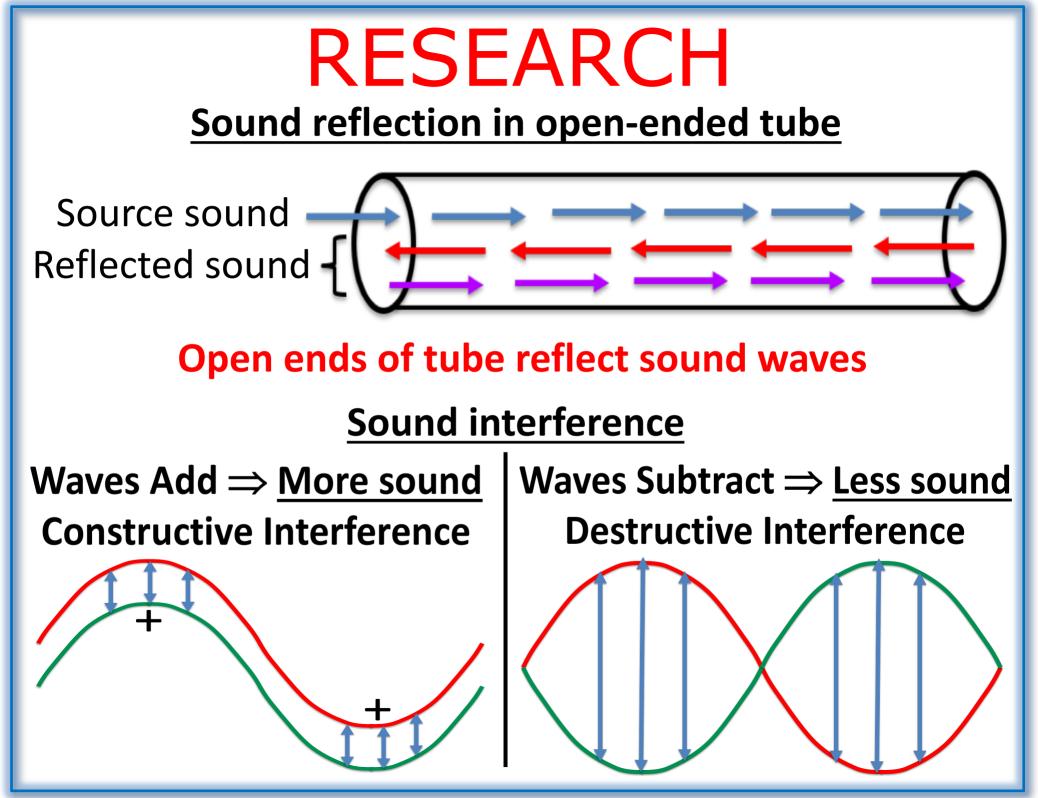
HYPOTHESIS

lf

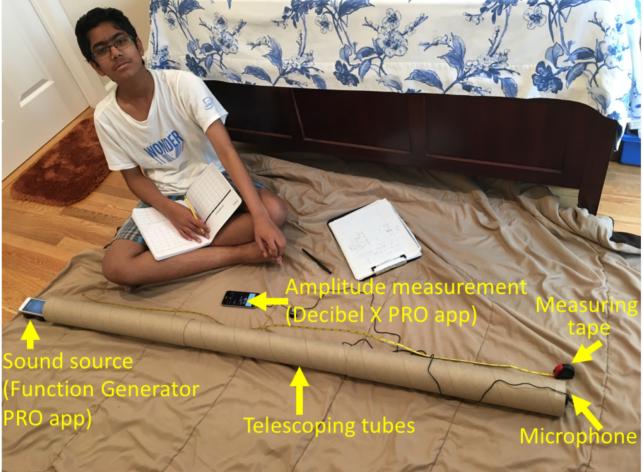
length of tube is gradually reduced, then

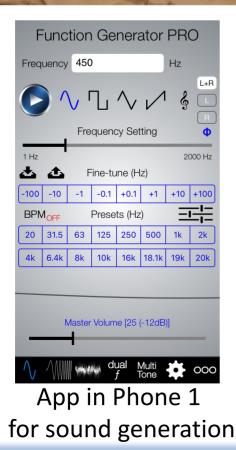
sound amplitude oscillates periodically


VARIABLES


IV: Length of tubeDV: Amplitude of sound at end of tubeControl: Amplitude with no tube

CONSTANTS


Setting of experiment (room) Ambient sound level in setting Material used for tube (cardboard) Device used to produce sound Device used to measure sound


RESEARCH Properties of a sound wave

SETUP

App in Phone 2 for amplitude measurement

MATERIALS

- Two telescoping hollow cardboard tubes
 - Length varied between 0.53m to 1.07m
- iPhone 1 with Function Generator PRO iOS app
 - Generate frequencies 20Hz 20,000 Hz
- iPhone 2 with Decibel X PRO iOS app
 - Measures sound amplitude in decibels
- Tape measure to measure length of tube
- Lavalier microphone to capture sound
- Pencil and paper to record measurements

PROCEDURE

- 1. Set Function Generator app in iPhone 1 to 700Hz
- 2. Connect microphone to iPhone 2
- 3. Set iPhone 1 at sound source end of the tube
- 4. Position the microphone in front of iPhone 1
- 5. Measure sound amplitude at source with iPhone 2
- 6. Extend the telescoping tube to length of 1m
- 7. Tape microphone to the other end of the tube
- 8. Position microphone at center of tube opening
- Reduce tube length by collapsing the tubes and stop when sound amplitude reaches a maximum or a minimum
- 10. Measure and record the length of tube
- 11. Record sound amplitude at end of tube
- 12. Remove tube and record sound amplitude at same location
- 13. Repeat steps 8-12 by decreasing tube length until all maximums and minimums are recorded
- 14. Repeat steps 3-13 for iPhone 1 source frequency set at 1200Hz, 1700Hz, 2200Hz and 2700Hz
- 15. Repeat each measurement above 3 times for trials

DATA Source frequency: 700Hz

Mean Amplitude (dB) Mean tube Amplitude Without length With tube setting tube (cm) (expt.) (control) 66.1 1st min 104.56 94.4 1st max 91.86 104.83 73.9 2nd min 81.28 94.73 77.67 2nd max 68.26 105.27 73.03

Amplitude at source: 97.1 dB

Source frequency: 1200Hz

Amplitude setting	Mean tube length (cm)	Mean amplitude (dB)	
		With tube (expt.)	Without tube (control)
1 st min	102.34	94.53	67.8
1 st max	95.36	101.3	68.33
2 nd min	88.16	94.97	69.50
2 nd max	80.65	100.97	62.83
3 rd min	72.92	94.47	65.9
3 rd max	67.10	100.73	64.43
4 th min	58.86	94.37	71.13

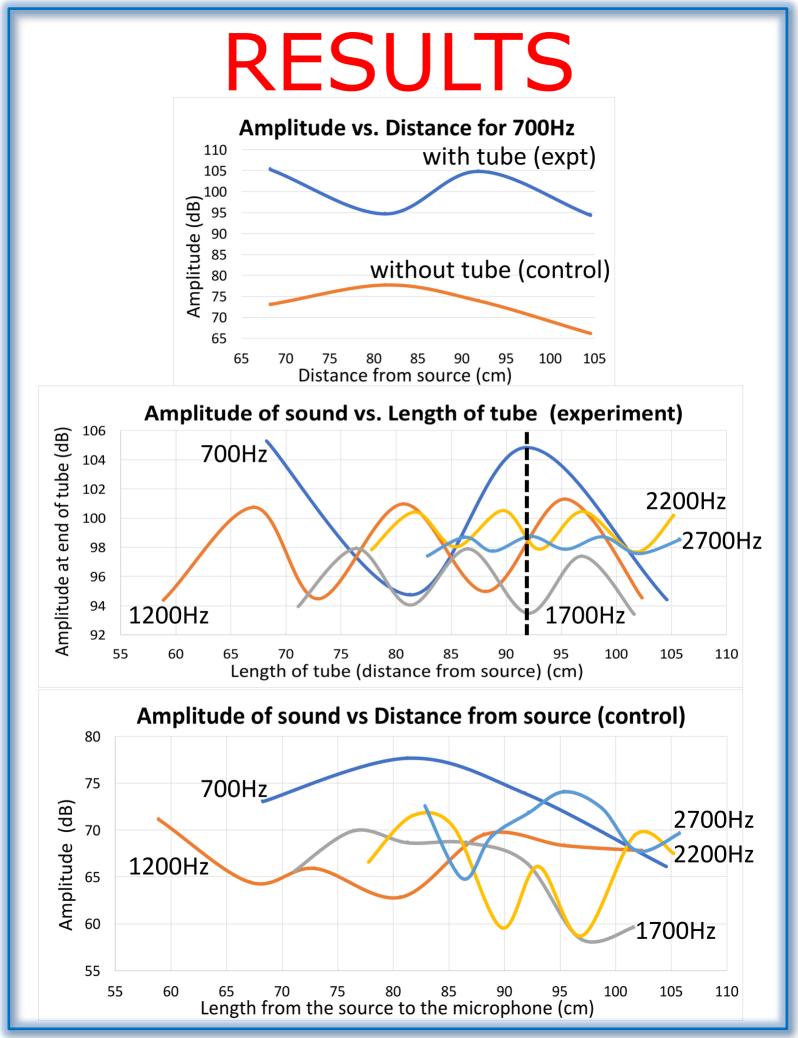
Amplitude at source: 94.07 dB

Source frequency: 1700Hz

Amplitude setting	Mean tube length (cm)	Mean amplitude (dB)		
		With tube (expt.)	Without tube (control)	
1 st min	101.60	93.40	59.6	
1 st max	96.84	97.40	58.37	
2 nd min	91.97	93.47	66.50	
2 nd max	86.57	97.90	68.63	
3 rd min	81.28	94.03	68.63	
3 rd max	76.41	97.93	69.90	
4 th min	71.12	93.93	65.6	
Amplitudo at courco: 02 02 dB				

Source frequency: 2200Hz

Amplitude setting	Mean tube length (cm)	Mean amplitude (dB)		
		With tube (expt.)	Without tube (control)	
1 st max	105.20	100.17	67.50	
1 st min	101.71	97.67	69.43	
2 nd max	96.94	100.43	58.70	
2 nd min	93.03	97.87	66.10	
3 rd max	89.75	100.5	59.57	
3 rd min	85.41	98.03	70.33	
4 th max	81.70	100.4	71.50	
4 th min	77.79	97.83	66.57	
Amplitudo at courco: Q6 82 dB				


Amplitude at source: 96.83 dB

Source frequency: 2700Hz

Amplitude setting	Mean tube length (cm)	Mean amplitude (dB)	
		With tube (expt.)	Without tube (control)
1 st max	105.73	98.53	69.63
1 st min	101.92	97.57	67.77
2 nd max	98.74	98.73	72.37
2 nd min	95.36	97.87	74.10
3 rd max	92.18	98.77	71.83
3 rd min	88.79	97.73	69.23
4 th max	86.25	98.70	64.8
4 th min	82.87	97.40	72.57

Amplitude at source: 100.17 dB

Amplitude at source: 93.93 dB

CONCLUSION

- Results show that hypothesis is correct
- For a fixed source frequency,
 - Tube length $\downarrow \Rightarrow$ amplitude \checkmark
 - Differences in tube length between consecutive extrema remain the same
 - Max and min amplitudes remain almost constant
- Frequency \uparrow
 - ⇒ Difference in tube lengths between consecutive extrema is lower
 - ⇒ Difference between max and min amplitudes decreases
- Amplitudes with tube are higher than that without the tube

FUTURE RESEARCH

- Explore effect of different tube shapes (conical, square cylindrical) on amplitude
- Explore effect of different tube materials (metal, foam) on amplitude
- Investigate addition of closed end tube attachments to muffle sound
- Use additional sound sources to cancel/amplify sound from main source

SELECTED REFERENCES

- Sound Wave Interference. (n.d.). Retrieved October 23, 2018 from <u>https://www.nde-</u> ed.org/EducationResources/HighSchool/Sound/inter ference.htm
- Woodford, C. (2018, February 20). Sound The science of waves, how they travel, how we use them. Retrieved October 23, 2018 from <u>https://www.explainthatstuff.com/sound.html</u>
- Syllabus, Fall 2008. (n.d.). Retrieved from <u>http://www.physics.indiana.edu/~courses/p109/P10</u> <u>9fa08/</u>