Catalan Objects

Ishwar Suriyaprakash

In Math, we solve different counting problems Counting problems can have interesting answers

In Math, we solve different counting problems Counting problems can have interesting answers

Example

Q: How many ways to tile a 1 x n board with dominos (2x1) or squares (1x1)?

In Math, we solve different counting problems Counting problems can have interesting answers

Example

Q: How many ways to tile a 1 x n board with dominos (2x1) or squares (1x1)?
A: F_n - the nth Fibonacci number

In Math, we solve different counting problems Counting problems can have interesting answers

Example

Q: How many ways to tile a 1 x n board with dominos (2x1) or squares (1x1)?
A: F_n - the nth Fibonacci number

Sequences can have combinatorial interpretations

- 1. Number of Dyck paths on an $n \ge n$ grid Dyck path: path from (0,0) to (n,n) on grid such that
 - steps of length 1 either to the right or upwards on grid
 - each point on path not above line y = x

- 1. Number of Dyck paths on an $n \ge n$ grid
- 2. Number of unlabeled rooted binary trees with *n* vertices

Example trees with 3 vertices

- 1. Number of Dyck paths on an $n \ge n \ge n$
- 2. Number of unlabeled rooted binary trees with *n* vertices
- 3. Number of triangulations of a convex *n*-vertex polygon

Example triangulations of an octagon

<u>A Few Combinatorial Problems</u>

- 1. Number of Dyck paths on an $n \ge n$ grid
- 2. Number of unlabeled rooted binary trees with n vertices
- 3. Number of triangulations of a convex n-vertex polygon
- 4. Number of tilings of a n-step staircase with rectangles

Example tilings of a 5-step staircase

- 1. Number of Dyck paths on an $n \ge n$ grid
- 2. Number of unlabeled rooted binary trees with *n* vertices
- 3. Number of triangulations of a convex n-vertex polygon
- 4. Number of tilings of a n-step staircase with rectangles

Answer to each problem above is the following

$$\frac{1}{n+1}\binom{2n}{n} = \mathbf{C}_n, the \ n^{th} \ Catalan \ number$$

This sequence is called the Catalan sequence

1. Why is the number Dyck paths on an $n \ge n$ grid C_n ?

Dyck path: path from (0,0) to (n,n) on grid such that

- steps of length 1 either to the right or upwards on grid
- each point on path not above line y = x

Example Dyck paths on a 6x6 grid

1. Why is the number Dyck paths on an $n \ge n$ grid C_n ?

Total number of paths from (0,0) to (n,n) is $\binom{2n}{n}$.

1. Why is the number Dyck paths on an $n \ge n$ grid C_n ?

<u>Good Paths</u> = C_n

1. Why is the number Dyck paths on an $n \ge n$ grid C_n ?

1. Why is the number Dyck paths on an $n \ge n$ grid C_n ?

1. Why is the number Dyck paths on an $n \ge n$ grid C_n ?

1. Why is the number Dyck paths on an $n \ge n$ grid C_n ?

Bad Paths

Number of paths from (0,0) to (n - 1, n + 1) is $\binom{2n}{n-1}$.

1. Why is the number Dyck paths on an $n \ge n$ grid C_n ?

of good paths = total - bad

$$= \binom{2n}{n} - \binom{2n}{n-1}$$
$$= \frac{1}{n+1} \binom{2n}{n}$$
$$= \mathbf{C}_n$$

Catalan Sequence & Recurrence

$$\frac{1}{n+1}\binom{2n}{n} = \mathbf{C}_n, the \ n^{th} \ Catalan \ number$$

 \mathbf{C}_n can be represented as a recurrence relation

$$C_{n} = \sum_{k=0}^{n-1} C_{k} C_{n-k-1}$$

= $C_{0} C_{n-1} + C_{1} C_{n-2} + ... + C_{n-2} C_{1} + C_{n-1} C_{0}$

Revisiting Binary Trees

Number of unlabeled rooted binary trees with n vertices

Let B_n be the number of such trees <u>Proof by induction</u> to show that $B_n = \mathbf{C}_n$, for $n \ge 0$

Base cases: $B_0 = \mathbf{C}_0 = 1$, and $B_1 = \mathbf{C}_1 = 1$ Induction step: if $B_k = \mathbf{C}_k$ for all k < n, then $B_n = \mathbf{C}_n$

<u>Proof by induction</u> to show that $B_n = \mathbf{C}_n$, for $n \ge \mathbf{0}$

Constructing an n-vertex binary tree ...

<u>Proof by induction</u> to show that $B_n = \mathbf{C}_n$, for $n \ge \mathbf{0}$

<u>Proof by induction</u> to show that $B_n = \mathbf{C}_n$, for $n \ge \mathbf{0}$

Conditions:

- l vertices on the left
- r vertices on the right
- l + r + 1 = n

<u>Proof by induction</u> to show that $B_n = \mathbf{C}_n$, for $n \ge \mathbf{0}$

Conditions:

- l vertices on the left
- r vertices on the right
- l + r + 1 = n

 B_l and $B_r \Rightarrow B_l \times B_r$ trees trees trees

<u>Proof by induction</u> to show that $B_n = \mathbf{C}_n$, for $n \ge \mathbf{0}$

A binary tree with n vertices can have:

- 0 on left, n-1 on right
- 1 on left, n-2 on right
- •
- •
- •
- n-1 on left, 0 on right

<u>Proof by induction</u> to show that $B_n = \mathbf{C}_n$, for $n \ge \mathbf{0}$

Values for (l, r):

- 0 on left, n-1 on right $\Rightarrow B_0 \times B_{n-1}$
- 1 on left, n-2 on right $\Rightarrow B_1 \times B_{n-2}$
- •
 - •
 - •
 - n-1 on left, 0 on right $\Rightarrow B_{n-1} \times B_0$

<u>Proof by induction</u> to show that $B_n = \mathbf{C}_n$, for $n \ge \mathbf{0}$

$$B_n = B_0 B_{n-1} + B_1 B_{n-2} + \dots + B_{n-1} B_0$$
$$= \sum_{k=0}^{n-1} B_k B_{n-k-1} = \mathbf{C}_n$$

Solution to Combinatorial Problems

- 1. Number of Dyck paths on an *n* x *n* grid
- 2. Number of unlabeled rooted binary trees with n vertices
- 3. Number of triangulations of a convex n-vertex polygon
- 4. Number of tilings of a n-step staircase with rectangles

Problems 3 and 4 can be either

- a) Transformed to the Dyck paths problem, or
- b) Proven to have the Catalan recurrence

Solution to Combinatorial Problems

- 1. Number of Dyck paths on an *n* x *n* grid
- 2. Number of unlabeled rooted binary trees with n vertices
- 3. Number of triangulations of a convex *n*-vertex polygon
- 4. Number of tilings of a *n*-step staircase with rectangles

Problems 2, 3, and 4 can be eithera) Transformed to the Dyck paths problem, orb) Shown to have the Catalan recurrence

Not just these 4, about 214 combinatorial problems on graphs, strings, partitions, permutations have C_n as their answer!

Solution to Combinatorial Problems

- 1. Number of Dyck paths on an *n* x *n* grid
- 2. Number of unlabeled rooted binary trees with n vertices
- 3. Number of triangulations of a convex *n*-vertex polygon
- 4. Number of tilings of a *n*-step staircase with rectangles

Problems 2, 3, and 4 can be eithera) Transformed to the Dyck paths problem, orb) Shown to have the Catalan recurrence

See Catalan Numbers by Richard P. Stanley for the 214 combinatorial problems