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Introduction
In Math, we solve different counting problems
Counting problems can have interesting answers

Example
Q:  How many ways to tile a 1 x 𝑛 board with 

dominos (2x1) or squares (1x1)?
A: 𝐹! – the 𝑛"# Fibonacci number

Sequences can have combinatorial interpretations



A Few Combinatorial Problems
1. Number of Dyck paths on an 𝑛 x 𝑛 grid

Dyck path: path from (0, 0) to (𝑛, 𝑛) on grid such that
• steps of length 1 either to the right or upwards on grid
• each point on path not above line 𝑦 = 𝑥
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A Few Combinatorial Problems
1. Number of Dyck paths on an 𝑛 x 𝑛 grid
2. Number of unlabeled rooted binary trees with 𝑛 vertices
3. Number of triangulations of a convex 𝑛-vertex polygon
4. Number of tilings of a 𝑛-step staircase with rectangles

Answer to each problem above is the following

1
𝑛 + 1

2𝑛
𝑛

= 𝐂!, 𝑡ℎ𝑒 𝑛"# 𝐶𝑎𝑡𝑎𝑙𝑎𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

This sequence is called the Catalan sequence



Revisiting Dyck Paths
1. Why is the number Dyck paths on an 𝑛 x 𝑛 grid 𝐂!?

Dyck path: path from (0, 0) to (𝑛, 𝑛) on grid such that
• steps of length 1 either to the right or upwards on grid
• each point on path not above line 𝑦 = 𝑥

Example Dyck paths on a 6x6 grid



Revisiting Dyck Paths
1. Why is the number Dyck paths on an 𝑛 x 𝑛 grid 𝐂!?

Total number of paths from 
(0, 0) to (𝑛, 𝑛) is $!

! .
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Revisiting Dyck Paths
1. Why is the number Dyck paths on an 𝑛 x 𝑛 grid 𝐂!?

Bad Paths

Number of paths from 
(0, 0) to (𝑛 − 1, 𝑛 + 1) is 
$!
!%& .



Revisiting Dyck Paths
1. Why is the number Dyck paths on an 𝑛 x 𝑛 grid 𝐂!?

# of good paths = total - bad

= !"
" − !"

"#$

= $
"%$

!"
"

= 𝐂"



Catalan Sequence & Recurrence
1

𝑛 + 1
2𝑛
𝑛

= 𝐂!, 𝑡ℎ𝑒 𝑛"# 𝐶𝑎𝑡𝑎𝑙𝑎𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝐂! can be represented as a recurrence relation

𝐂! = 9
'()

!%&

𝐂'𝐂!%'%&

= 𝐂)𝐂!%& + 𝐂&𝐂!%$ + …+ 𝐂!%$𝐂& + 𝐂!%&𝐂)



Revisiting Binary Trees
Number of unlabeled rooted binary trees with 𝑛 vertices

Let 𝐵! be the number of such trees
Proof by induction to show that 𝐵! = 𝐂!, for 𝑛 ≥ 0

Base cases: 𝐵) = 𝐂) = 1, and 𝐵& = 𝐂& = 1
Induction step: if 𝐵' = 𝐂' for all 𝑘 < 𝑛 , then 𝐵! = 𝐂!



Binary Trees
Proof by induction to show that 𝐵! = 𝐂!, for 𝑛 ≥ 0

Constructing an n-vertex binary tree …
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1 vertex (root)
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• 𝑙 + 𝑟 + 1 = 𝑛



Binary Trees
Proof by induction to show that 𝐵! = 𝐂!, for 𝑛 ≥ 0

l r

Conditions:
• l vertices on the left
• r vertices on the right
• 𝑙 + 𝑟 + 1 = 𝑛

𝐵*
trees

𝐵+
trees

⇒ 𝐵* × 𝐵+ treesand



Binary Trees
Proof by induction to show that 𝐵! = 𝐂!, for 𝑛 ≥ 0

A binary tree with n vertices can have:
• 0 on left, n-1 on right
• 1 on left, n-2 on right
• .
• .
• .
• n-1 on left, 0 on right



Binary Trees
Proof by induction to show that 𝐵! = 𝐂!, for 𝑛 ≥ 0

Values for (l, r):
• 0 on left, n-1 on right ⇒ 𝐵) × 𝐵!%&
• 1 on left, n-2 on right ⇒ 𝐵& × 𝐵!%$
• .
• .
• .
• n-1 on left, 0 on right ⇒ 𝐵!%& × 𝐵)



Binary Trees
Proof by induction to show that 𝐵! = 𝐂!, for 𝑛 ≥ 0

𝐵! = 𝐵)𝐵!%& + 𝐵&𝐵!%$ +⋯+ 𝐵!%&𝐵)

= 9
'()

!%&

𝐵'𝐵!%'%& = 𝐂!



Solution to Combinatorial Problems
1. Number of Dyck paths on an 𝑛 x 𝑛 grid
2. Number of unlabeled rooted binary trees with 𝑛 vertices
3. Number of triangulations of a convex 𝑛-vertex polygon
4. Number of tilings of a 𝑛-step staircase with rectangles

Problems 3 and 4 can be either
a) Transformed to the Dyck paths problem, or
b) Proven to have the Catalan recurrence
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Solution to Combinatorial Problems
1. Number of Dyck paths on an 𝑛 x 𝑛 grid
2. Number of unlabeled rooted binary trees with 𝑛 vertices
3. Number of triangulations of a convex 𝑛-vertex polygon
4. Number of tilings of a 𝑛-step staircase with rectangles

See Catalan Numbers by Richard P. Stanley 
for the 214 combinatorial problems 

Problems 2, 3, and 4 can be either
a) Transformed to the Dyck paths problem, or
b) Shown to have the Catalan recurrence


